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Abstract 

This study assesses annual mean variability and 50-year trends in indices of tropical 

Indo-Pacific Ocean temperature and Pacific zonal wind stress in 4 CMIP5 ensembles of 

initialized decadal hindcasts to identify potential biases and systematic trends. We show 

that all models used in this analysis simulate statistically significant warming trends in 

Warm Pool and Cold Tongue near-surface temperatures. However, the Pacific near-

equatorial zonal wind stress trends are inconsistent and not statistically significant at long 

lead-times. There is an indication that the zonal wind stress trends are proportional to the 

relative magnitude of the Warm Pool and Cold Tongue trends. All models show a 

warming trend in the Indian Ocean thermocline due to an unrealistic deepening of the 

thermocline. In the Pacific Ocean thermocline, all models have statistically significant 

trends but disagree as to whether it is a warming or cooling trend. Interestingly, we find 

no systematic relationship between near-equatorial zonal mean zonal wind stress trends 

and Pacific Ocean thermocline trends. PDFs are used to assess whether biases develop in 

annual mean distributions as a function of lead-time. In the Warm Pool and Cold Tongue 

regions, all ensembles show a bias towards a symmetric Gaussian distribution at long 

lead-times, which may cause an underestimate of predictability of a forced trend.  
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1. Introduction 

The Intergovernmental Panel on Climate Change Fourth Assessment (AR4, Solomon et 

al. 2007) concluded that, as a result of an increase in well-mixed greenhouse gases all of 

North America is likely to warm in the 21st Century. In addition, annual mean 

precipitation is very likely to increase in Canada and the northeast USA, and likely to 

decrease in the southwest USA. To what extent are these climate variations due to the 

ocean’s response to an increase in greenhouse gases? Studies such as Hoerling and 

Kumar (2003) attribute the persistent drought of 1998-2002 over the U.S. to sea surface 

temperatures (SSTs) in the Indian and tropical Pacific Oceans. These anomalous SSTs 

were in turn attributed to the ocean’s response to an increase in greenhouse gases. These 

results are consistent with the atmospheric general circulation model (AGCM) studies of 

Barsugli et al. (2006) and Deser and Phillips (2009), among others. 

This study focuses on trends in the Indo-Pacific Ocean, where natural 

multidecadal-to-centennial variations obscure our ability to identify the basin-wide 

response to an increase in greenhouse gases. For example, the sea surface temperatures 

(SST) in the Warm Pool region (18°N-18°S, 60°-165°E) have warmed by approximately 

0.5°C since 1961 (Figure 1a). However, multidecadal trends in the Pacific and Indian 

Ocean thermocline have complicated the identification of how the tropical Indo-Pacific 

basin responds to an increase in greenhouse gases. Specifically, the tropical Indian Ocean 

exhibited a cooling upper thermocline trend and a warming surface trend from 1961-1998 

(Trenary and Han 2008; Han et al. 2006; Lee 2004), which subsequently reversed after 

1999 (Feng et al. 2010). These upper thermocline trends are primarily forced by 

variations in local Ekman pumping anomalies, which shoal or deepen the thermocline 
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(Alory et al. 2007), with changes in shallow overturning circulations playing a secondary 

role (Lee 2004; Schoenefeldt and Schott 2006). Similar multi-decadal trends have been 

observed in the western Pacific thermocline, where a pronounced cooling trend (along 

with a weakening of the shallow overturning circulations) was observed from 1960-1999 

(McPhaden and Zhang 2002), which reversed thereafter (McPhaden and Zhang 2006; Lee 

and McPhaden 2008; Feng et al. 2010).  

In the eastern equatorial Pacific, the identification of the response to an increase 

in greenhouse gases is even more challenging. For example, Solomon and Newman 

(2012) used a multivariate red noise model of El Nino/Southern Oscillation (ENSO) 

variability to demonstrate that centennial trends due to natural randomly occurring ENSO 

variability are larger than the observed trend in the eastern equatorial Pacific Ocean since 

1900 in four SST reconstructions, indicating that if there is a trend due to external forcing 

in the eastern equatorial Pacific it is too small to be distinguished from natural variability. 

In addition, zonal mean zonal wind stress (τx) and sea level pressure (SLP) trends in the 

Pacific basin, which are dependent upon the relative strength of the trends in the Warm 

Pool and Cold Tongue (4°N-4°S, 170°E-70°W) regions (Meng et al. 2012), have reversed 

sign and strengthening since the 1990’s (Merrifield 2011; Merrifield and Maltrud 2011). 

It has been suggested that the systematic changes in the Warm Pool SSTs may be driving 

these Indo-Pacific basin changes (Luo et al. 2012). 

The World Climate Research Program’s (WCRP) Working Group on Coupled 

Modeling has carried out a coordinated set of model experiments for the 

Intergovernmental Panel on Climate Change Fifth Assessment (AR5) that includes, for 

the first time, simulations of decadal climate prediction (hereafter referred to as 
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initialized decadal forecasts, see WCRP Joint Scientific Committee Session 29 Report). 

The ultimate goal of these simulations will be to provide policymakers with information 

on decadal time scales to assess possible consequences of climate change.  

The Climate Model Intercomparison Project phases 3 and 5 (CMIP3 and CMIP5) 

organized an assessment of climate model simulations forced with an estimate of 20th-21st 

century external forcings (greenhouse gases, volcanic emissions, solar cycle variability, 

and aerosols) in order to verify and validate climate models used for projections of future 

climate change. These coupled climate model simulations produce a range of responses, 

in space and time, to anthropogenic radiative forcing (for example, see Solomon et al. 

(2011) Figure 8). Studies of CMIP3 ensembles clearly demonstrate that model 

uncertainty is the dominant source of uncertainty for projections of globally averaged 

surface temperature on decadal time scales (see Hawkins and Sutton 2009, 2011).  

The extent to which initialization of the ocean state improves predictability on 

decadal time scales was first explored by Smith et al. (2007). This study found that 

initializing the Hadley Centre HadCM3 coupled climate model with an estimate of the 

observed ocean state produces a significant improvement in the forecast of the globally 

averaged mean surface temperature for a forecast period of 9 years. However, for 

forecasts over regions such as North America the initialized and uninitialized simulations 

had 9-year mean surface temperature anomaly root mean square errors (RMSEs) with 

similar patterns and equivalent magnitudes, highlighting the issue of limits on 

predictability due to model bias on these time scales. This study also found that the 

predictable climate change signal is determined entirely by external forcing after 

approximately 5 years, in agreement with studies such as Troccoli and Palmer (2007) but 
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in contrast to studies such as Keenlyside et al. (2008). These conclusions need to be 

tested with the CMIP5 decadal hindcasts. 

2. Methods, Models and Data 

In this study we use CMIP5 initialized decadal hindcasts to identify biases in natural and 

externally forced variability and to identify any potential systematic responses to an 

increase in greenhouse gases across ensembles from 4 coupled climate models. We focus 

on indices that have been used in past studies to define variability in the Indo-Pacific, 

specifically; the Warm Pool and Cold Tongue indices (previously defined), the Pacific τx 

index (5°N-5°S, 120°E-70°W), the Pacific Ocean thermocline index (125-250 meters 

depth, 5°N-5°S, 140°E-160°W), and the Indian Ocean thermocline index (75-275 meters 

depth, 9°S-16°S, 30°E-100°E). The areas used to form these indices are indicated in 

Figures 1 and 2.  

We apply our analysis to four sets of initialized decadal hindcasts archived in the 

CMIP5 database (Taylor et al. 2012) that are initialized yearly from 1960-2009. Each 

start date has 10 ensemble members with perturbed initial conditions. These hindcasts 

take into account changes in external forcings such as greenhouse gases, solar activity, 

stratospheric aerosols associated with volcanic eruptions and anthropogenic aerosols. The 

first two ensembles use the UK Met Office coupled climate model HadCM3 configured 

with a horizontal resolution of 2.5ox2.5o in the atmosphere and 1.25o in the ocean 

(Gordon et al. 2000). The HadCM3-i2 ensemble is anomaly initialized (observed 

anomalies and the models mean climate are used as initial conditions) and the HadCM3-

i3 ensemble is initialized with full fields (observed anomalies and climate mean states are 
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used as initial conditions). The third ensemble uses the Canadian Centre for Climate 

Modelling and Analysis CanCM4 (Arora et al. 2011; Merryfield et al. 2011), and is full 

field initialized. The fourth ensemble uses the NOAA Geophysical Fluid Dynamics 

Laboratory CM2.1 (Delworth et al. 2006; Chang et al. 2012) and is anomaly initialized. 

All fields are interpolated to the HadCM3 2.5ox2.5o grid. 

Annual mean anomalies are bias corrected as a function of lead-time, where the 

model forecast anomaly is calculated as 𝑌!"! = 𝑌!" − 𝑌! , where 𝑌! is the ensemble-average 

forecast as a function of lead-time 𝜏, 𝑌!"!  is the anomaly of the raw forecast with respect to 

the ensemble average, j  is the starting year. 𝑌! is calculated as !
!

𝑌!"!
!!! . Figure 3 

illustrates how forecasted trends are calculated as a function of lead-time in this study.  

The verification datasets used in this study are three dimensional temperature 

fields from the European Centre for Medium-range Weather Forecasts (ECMWF) Ocean 

Reanalysis System 4 (ORAS4, Balmaseda et al. 2013) and the Geophysical Fluid 

Dynamics Laboratory Ensemble Coupled Data Assimilation V3.1 (ECDA, Chang et al. 

2012). ORAS4 assimilates ECMWF EN3 v2a expendable bathythermograph (XBT) bias 

corrected temperature and salinity profiles, Archiving, Validation and Interpretation of 

Satellite Oceanographic data (AVISO) along track altimeter sea level anomalies and 

global trends, and ECMWF 40 Year Re-analysis (ERA-40), National Ocean and 

Atmospheric Administration (NOAA) Optimum Interpolation v2 and The National 

Centre for Ocean Forecasting Operational Sea Surface Temperature and Sea Ice Analysis 

SST and sea-ice using NEMOVAR in its 3D-var FGAT mode (Morgensen et al. 2012). 

Surface fluxes are from the ERA-40 atmospheric reanalysis, the ERA-Interim reanalysis, 
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and the operational ECMWF atmospheric analysis. ECDA applies an ensemble-based 

filtering algorithm to the GFDL coupled climate model CM2.1. ECDA assimilates World 

Ocean Database 2009 and global temperature–salinity profile program datasets 

temperature and salinity profiles, NOAA optimum interpolation SST v2 and HadISST 

SSTs, and NOAA National Centers for Environmental Prediction (NCEP) reanalysis 

winds, temperature and surface pressure. For zonal wind stress we use the ECDA alone 

since wind stress fields were not available for ORAS4. 

Linear trends are calculated using the method of least squares linear regression. 

The Student’s t-test (Wilks, 1995) is used to test the statistical significance of the trend. 

Trends are estimated to be significantly different from a zero trend when they exceed the 

95% level. Both 95% and 98% significant trends are indicated in Tables 1-5.  

Probability Distribution Functions (PDFs) are used in this study to assess 

potential biases in forecasts of natural variability in the Indo-Pacific basin. These biases 

in “climate noise” impact the predictability of robust linear trends. The one-tailed chi-

square test is used to test whether PDFs come from different distributions. Chi-square is 

calculated with degrees of freedom equal to the number of bins minus two. Two 

distributions are estimated to come from different distributions when the p-values are less 

then 0.05 (there is less than a 5% chance that the two PDFs come from the same 

distribution). Hindcast PDFs are constructed using 500 annual means and detrended by 

removing the ensemble mean trend.  

3. Results 

a. Ensemble mean trends 
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Figures 1 and 2 show linear trends of the average of the ECDA and ORAS4 (referred to 

as AveObs from hereon) ocean temperature fields and the ECDA zonal wind stress fields 

from 1961-2009. The AveObs linear trend shows a warming trend throughout the tropical 

Indo-Pacific at 5m and a basin-wide cooling trend in both the Pacific and Indian Ocean 

equatorial thermoclines, with a basin-wide shoaling of the equatorial Pacific Ocean 

thermocline. The warming trend in the Cold Tongue region is less than the warming trend 

in the Warm Pool region (Tables 1 and 2), indicating a strengthening of the equatorial 

SST gradient. Trends averaged over the Cold Tongue and Pacific τx regions are not 

significant beyond the 95% level (Tables 2 and 3). The cooling trend in both the Pacific 

and Indian Ocean thermocline regions is statistically significant even though there has 

been a pronounced reversal in the trends since the end of the 1990’s (Tables 4 and 5). 

Figure 2 shows a strengthening of the equatorial trades from 150°E-150°W and a 

weakening east of 150°W, indicating a divergent flow near 150°W, which is consistent 

with the shoaling of the Pacific Ocean thermocline near 150°W being due to reduced 

Ekman pumping. The cooling trend in the Indian Ocean thermocline peaks between 16-

8°S but weaker cooling trends are seen to extend from to 18°S to 25°N. 

In Figure 4 we show the Warm Pool indices for lead-times of 1, 2, 6, and 10 

years. The close correspondence between the observed warming trend and the forecasted 

trend is seen for lead-times up to 10 years. However, as can be seen clearly in Table 1, 

there is a systematic increase in the warming trend for longer lead-times for all 4 

ensembles. All ensemble mean trends in the Warm Pool region are statistically significant 

beyond the 98% level.  
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As stated previously, the observed trend in the Cold Tongue region is not 

statistically significant. This is the case for the forecasted trend as well as for lead-times 

less than 3 years. However, as seen in Table 2 and Figure 5, all ensembles produce a 

warming trend that is significant beyond the 98% level for lead-times greater than 2 

years. These warming trends are 45-95% larger than the observed Cold Tongue trend. 

These warming trends may be due to greater statistical significance due to less aliasing 

from the observed anomalies as the model becomes independent of the initial conditions 

or due to the model developing unrealistic trends for longer lead-times, given the large 

uncertainty in the observed Cold Tongue region it is not possible to determine which is 

occurring. It is interesting to note that the HadCM3 i2 and i3 ensembles produce very 

similar trends even though one is anomaly initialized and the other is full field initialized. 

Considering the large bias correction needed for the HadCM3 i3 ensemble (see Kim et al. 

2012), this is an indication of the linearity of the response to external forcing in this 

model.  

Even though both the Warm Pool and Cold Tongue ensemble mean trends are 

significant for all ensembles for lead-times greater than 2 years, there is no consistency in 

the modeled Pacific τx trends (Table 3 and Figure 6). For example, Table 3 shows that 

only CanCM4 has a trend averaged over lead-times of 6-10 years that is significant 

beyond the 95% level. This trend is a weakening of the zonal mean equatorial trades, 

while the other three models produce a statistically insignificant strengthening of the 

equatorial trades. However, even though the majority of these trends are not statistically 

significant, there is an indication that the Pacific τx trends are related to the relative 
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magnitude of the Warm Pool and Cold Tongue trends ( 

τx  trends   ∝ Cold Tongue-Warm Pool trends). 

All ensembles produce statistically significant trends in the Pacific Ocean 

thermocline region for long lead-times (Table 4 and Figure 7). However there is no 

agreement in the sign of the forecasted trend. The HadCM3 models produce a warming 

trend while the CanCM4 and GFDL models produce a cooling trend that is 0.22-0.43 

times smaller than the observed trend. There is no systematic relationship between the 

forecasted Pacific τx trends and the Pacific Ocean thermocline trends. Specifically, there 

is no consistency between the CanCM4 and GFDL Pacific τx trends even though at long 

lead-times both show a basinwide cooling trend in the Pacific Ocean thermocline similar 

to the observed trend in Figure 1 (results not shown). 

In the Indian Ocean thermocline region, all ensembles show a cooling trend for 

lead-times less than 3 years, similar to observations (Table 5 and Figure 8). However, the 

HadCM3 i3 trends for lead-times less than 3 years are not statistically significant. For 

longer lead-times all ensembles develop warming trends, all of which are statistically 

significant beyond the 98% level except for the GFDL ensemble mean trend. These 

warming trends are due to an unrealistic deepening of the Indian Ocean thermocline 

across the basin that increases with lead-time (seen in Table 5). For example, for averages 

over 6-10 year lead-times, HadCM3 i2 warming trends extend to 300 meters, HadCM3 i3 

trends extend to 300 meters, CanCM4 warming trends extend to 200 meters, and GFDL 

warming trends extend to 250 meters (results not shown), while observed trends in the 

equatorial east Indian Ocean do not extend below 150 meters (Figure 1). 
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b. Annual mean variability 
 

Figure 9 shows the distribution of detrended annual mean observations in the 

Warm Pool region compared to forecasts at lead-times of 2, 6, and 10 years. All 

ensembles at a lead-time of 2 years have distributions that are statistically 

indistinguishable from the observations. However, at a lead-time of 10 years all 

ensembles except GFDL have PDFs that come from different distributions than the 

observations. Specifically, all ensembles show a distribution that is more symmetric than 

the observations, which show more frequent extreme cold years than warm years. This 

may be a sampling issue with the limited number of observations or there may be an 

asymmetry in the observed distribution that is not captured in the models (also seen in the 

Pacific Ocean thermocline PDFs, discussed below). The similarity between the year 2 

lead-time distribution and observations indicate that it is the later since this PDF was 

constructed with 500 samples. In any case, the PDFs at a lead-time of 6 and 10 years 

show a bias towards a symmetric Gaussian distribution (Gaussian not shown). 

Observations in the Cold Tongue region show an asymmetric distribution, with a 

more frequent occurrence of extreme warm years than cold years (Figure 10), due to the 

large amplitude of El Niño events relative to La Niña events. All ensembles at a lead-time 

of 2 years have a distribution that is indistinguishable from the observed distribution. The 

HadCM3 ensembles at a lead-time of 10 years have a distribution that is indistinguishable 

from the observed distribution. The CanCM4 and GFDL distributions become more 

Gaussian with lead-time; at a lead-time of 10 years these two ensembles produce a 

similar number of extreme warm and cold years. However, this tendency to a more 

symmetric distribution with longer lead-times is seen in all four models indicating that 
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the statistics of ENSO events evolve from an asymmetric distribution to a distribution 

where La Niña and El Niño events have similar amplitudes. 

For the Pacific τx distributions, none of the forecasted distributions at a lead-time 

of 2 years come from the same distribution as observations (Figure 11). However, the 

CanCM4 and the GFDL distributions at a lead-time of 10 years are indistinguishable 

from the observed distribution. These two models simulate the observed skew towards 

strengthened equatorial trades while the HadCM3 ensembles have distributions that are 

independent of lead-time and underestimate the frequency of both extreme positive and 

negative years, potentially overestimated the predictability of a forced trend. 

In the Pacific Ocean thermocline region, all distributions from the hindcasts come 

from different distributions than the observations except for the GFDL distribution for a 

lead-time of 10 years, primarily due to the overestimate of cold years and a tendency 

towards a more symmetric distribution (Figure 12). Interestingly, the GFDL forecast at a 

lead of 10 years captures the peak skewed towards positive values and the long tail for 

extreme cold years quite well. Again the underestimate of the frequency of extreme cold 

years in the other three ensembles may overestimate the predictability of a forced trend. 

In the Indian Ocean thermocline region, only HadCM3 i2 and CanCM4 

distributions at a lead-time of 2 years are indistinguishable from the observed distribution 

(Figure 13). The GFDL distribution at a lead-time of 10 years shows the same skew 

towards positive values and the long tail due to the frequency of extreme cold years as the 

Pacific Ocean thermocline index that is not seen in the observed distribution. All 

distributions at a lead-time of 10 years show a broader distribution than observations, 
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potentially underestimating the predictability of a forced trend due to the overestimate of 

both extreme warm and cold years, consistent with the results of Corti et al. (2012). 

4. Summary and Conclusions 

In summary, the main findings of this study are: 

1) All ensembles produce a statistically significant warming trend in the Warm Pool 

region that systematically increases as a function of lead-time. All ensembles show a 

bias towards a symmetric Gaussian distribution in the Warm Pool region, whereas the 

observed distribution shows more frequent extreme cold years than warm years. 

2) All ensembles produce a warming trend in the Cold Tongue region that is significant 

beyond the 98% level for lead-times greater than 2 years. All ensembles have a 

tendency to develop more symmetric distribution with longer lead-times indicating 

that the statistics of ENSO events evolve from an asymmetric distribution to a 

distribution where La Niña and El Niño events have similar amplitudes. 

3) There is an indication that the Pacific τx trends are related to the relative magnitude of 

the Warm Pool and Cold Tongue trends.  

4) There is no systematic relationship between the forecasted Pacific τx trends and the 

Pacific Ocean thermocline trends. 

5) In the Pacific Ocean thermocline, statistically significant trends are only found across 

ensembles for 6-10 year lead-time averages, however two of the ensembles produce a 

warming trend and two of the ensembles produce a cooling trend.  

6) Warming trends develop in the Indian Ocean thermocline region at long lead-times 

due to an unrealistic deepening of the Indian Ocean thermocline across the basin. The 
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GFDL distribution at a lead-time of 10 years shows the same skew towards positive 

values and the long tail due to the frequency of extreme cold years in both the Indian 

and Pacific Ocean thermocline regions. However, all distributions at a lead-time of 10 

years show a broader distribution than observations, potentially underestimating the 

predictability of a forced trend due to the overestimate of both extreme warm and cold 

years. 

The different relationships between near-surface and subsurface temperature 

trends in each of the ensembles is an indication that models may reproduce observed 

surface trends but produce unrealistic subsurface trends due to an unrealistic heat balance 

in the upper ocean. For example, all ensembles produce systematic trends in the Warm 

Pool region, similar to observations, but fail to reproduce the observed shoaling of the 

Indian Ocean equatorial thermocline. This is an indication that the ensembles 

overestimate the “climate change commitment” due to warming trends in the upper 

ocean.  

In addition, the Pacific Ocean thermocline trends are much more uncertain than 

the near-surface trends. For example, the GFDL ensemble does not have statistically 

significant trends in the Pacific Ocean thermocline for lead times up to 10 years 

(however, an average over 6-10 year lead times is significant), while both Cold Tongue 

and Warm Pool trends are significant beyond the 98% level after a lead time of 6 years. 

This result highlights the difficulty of identifying externally forced trends in the short 

record of observed subsurface fields, as demonstrated in the reversal of trends in the 

Pacific and Indian Oceans since the late 1990’s. 
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This study highlights the large uncertainties in zonal mean zonal wind stress 

trends. For example, all ensembles have trends in the Cold Tongue, Warm Pool, and 

Pacific thermocline regions that are significant beyond the 98% level but Pacific τx trends 

that are only significant at the 95% level for one ensemble when averaged over lead-

times of 6-10 years. For the ensemble that does produce a statistically significant Pacific 

τx trend for an average over lead-times of 6-10 years (CanCM4), there is a consistent 

relationship between a weakening of the trades and a shoaling of the basin-wide 

equatorial Pacific thermocline. There is also an indication that the sign of the Pacific τx 

trends are proportional to the relative magnitude of trends in the Warm Pool and Cold 

Tongue regions. But given the large variability in the zonal wind stress, larger ensembles 

(and additional models) are needed to confirm these speculations.  

A detailed heat budget analysis of the upper ocean needs to be done to determine 

the relative importance of local and remote forcing in the Indo-Pacific basin-wide 

response to external forcing in these models. A heat budget analysis will be useful in 

identifying the relative roles of specific processes, such as the ocean thermostat in the 

eastern equatorial Pacific, in each model’s response to external forcing. If more fields 

from the decadal hindcasts become available to the scientific community this heat budget 

analysis will be done in a future study.   
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Table Captions: 

Table 1: Warm Pool index ensemble mean 50-year linear trends as a function of lead-

time, in units of °C/year. Bold font indicates that the trends are significant beyond the 

95% level. Underlined numbers indicate that the trends are significant beyond the 98% 

level. In Tables 1-5 orange shading indicates systematic increases or decreases in trends 

as a function of lead-time. Green shading indicates large differences in trends across the 

ensembles for the average over year 6-10 lead-times. Blue shading indicates systematic 

over or under estimates across ensembles for the average over year 6-10 lead-times. 

Table 2: Cold Tongue index ensemble mean 50-year linear trends as a function of lead-

time, in units of °C/year. Bold font indicates that the trends are significant beyond the 

95% level. Underlined numbers indicate that the trends are significant beyond the 98% 

level. 

Table 3: Pacific τx index ensemble mean 50-year linear trends as a function of lead-time, 

in units of dPa/year. Bold font indicates that the trends are significant beyond the 95% 

level. Underlined numbers indicate that the trends are significant beyond the 98% level. 

Table 4: Pacific Ocean thermocline index ensemble mean 50-year linear trends as a 

function of lead-time, in units of °C/year. Bold font indicates that the trends are 

significant beyond the 95% level. Underlined numbers indicate that the trends are 

significant beyond the 98% level. 

Table 5: Indian Ocean thermocline index ensemble mean 50-year linear trends as a 

function of lead-time, in units of °C/year. Bold font indicates that the trends are 
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significant beyond the 95% level. Underlined numbers indicate that the trends are 

significant beyond the 98% level.  
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Figure Captions: 

Figure 1: 1961-2009 tropical Indo-Pacific upper ocean trends calculated from the ECDA 

and ORAS4. A) At 5 m. Boxes indicate regions used to form Warm Pool (18°N-18°S, 

60°-165°E) and Cold Tongue (4°N-4°S, 170°E-70°W) indices. B) Zonally averaged 

across the Indian Ocean. Box indicates region used to form the Indian Ocean thermocline 

index (75-275 meters depth, 9°S-16°S, 30°E-100°E). C) Along the Equator. Box 

indicates the region used to form the Pacific Ocean thermocline index (125-250 meters 

depth, 5°N-5°S, 140°E-160°W). Contour interval equal to 0.004°C/year.   

Figure 2: 1961-2009 ECDA τx linear trend, in units of Pa/year. Box indicates the region 

used to form the τx index (5°N-5°S, 120°E-70°W). 

Figure 3: Schematic of forecasted trends in initialized 10-year hindcasts.  Hindcasts are 

initialized the year preceding forecast year-1 on November 1. To illustrate how the 

forecast years are defined, forecast year-1 is highlighted in red and forecast year-6 is 

highlighted in blue. 

Figure 4: HadCM3 i2 (left) and HadCM3 i3 (right) Warm Pool index, in units of °C. 

Ensemble mean (thick black line) and ensemble spread (gray shading) for lead-time of 1, 

2, 6, and 10 years. Observations shown with red line. Numbers show linear trend of the 

ensemble mean. 

Figure 4 continued: CanCM4 (left) and GFDL (right) Warm Pool index. 

Figure 5: HadCM3 i2 (left) and HadCM3 i3 (right) Cold Tongue index, in units of °C. 

Ensemble mean (thick black line) and ensemble spread (gray shading) for lead-time of 1, 
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2, 6, and 10 years. Observations shown with red line. Numbers show linear trend of the 

ensemble mean. 

Figure 5 continued: CanCM4 (left) and GFDL (right) Cold Tongue index. 

Figure 6: HadCM3 i2 and HadCM3 i3 Pacific τx index, in units of dPa. Ensemble mean 

(thick black line) and ensemble spread (gray shading) for lead-time of 1, 2, 6, and 10 

years. Observations shown with red line. Numbers show linear trend of the ensemble 

mean. 

Figure 6 continued: CanCM4 and GFDL Pacific τx index. 

Figure 7: HadCM3 i2 (left) and HadCM3 i3 (right) Pacific Ocean thermocline index, in 

units of °C. Ensemble mean (thick black line) and ensemble spread (gray shading) for 

lead-time of 1, 2, 6, and 10 years. Observations shown with red line. Numbers show 

linear trend of the ensemble mean. 

Figure 7 continued: CanCM4 (left) and GFDL (right) Pacific Ocean thermocline index. 

Figure 8: HadCM3 i2 (left) and HadCM3 i3 (right) Indian Ocean thermocline index, in 

units of °C. Ensemble mean (thick black line) and ensemble spread (gray shading) for 

lead-time of 1, 2, 6, and 10 years. Observations shown with red line. Numbers show 

linear trend of the ensemble mean. 

Figure 8 continued: CanCM4 (left) and GFDL (right) Indian Ocean thermocline index. 

Figure 9:  PDFs of detrended annual mean Warm Pool indices for lead-times of 2 years 

(green), 6 years (red), and 10 years (blue), in units of °C. PDFs of detrended observed 
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annual means shown with black dashed line. A) HadCM3 i2. B) HadCM3 i3. C) 

CanCM4. D) GFDL. 

Figure 10:  PDFs of detrended annual mean Cold Tongue indices for lead-times of 2 

years (green), 6 years (red), and 10 years (blue), in units of °C. PDFs of detrended 

observed annual means shown with black dashed line. A) HadCM3 i2. B) HadCM3 i3. C) 

CanCM4. D) GFDL. 

Figure 11:  PDFs of detrended annual mean Pacific τx indices for lead-times of 2 years 

(green), 6 years (red), and 10 years (blue), in units of dPa. PDFs of detrended observed 

annual means shown with black dashed line. A) HadCM3 i2. B) HadCM3 i3. C) 

CanCM4. D) GFDL. 

Figure 12:  PDFs of detrended annual mean Pacific Ocean thermocline indices for lead-

times of 2 years (green), 6 years (red), and 10 years (blue), in units of °C. PDFs of 

detrended observed annual means shown with black dashed line. A) HadCM3 i2. B) 

HadCM3 i3. C) CanCM4. D) GFDL. 

Figure 13:  PDFs of detrended annual mean Indian Ocean thermocline indices for lead-

times of 2 years (green), 6 years (red), and 10 years (blue), in units of °C. PDFs of 

detrended observed annual means shown with black dashed line. A) HadCM3 i2. B) 

HadCM3 i3. C) CanCM4. D) GFDL.  
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Warm Pool 
Trends AveObs HadCM3 I2 HadCM3 I3 CanCM4 GFDL 

CM2.1 

Forecast 
Year 1 1.06e-2 1.09e-2 1.15e-2 0.71e-2 1.43e-2 

Forecast 
Year 2  1.17e-2 1.16e-2 0.92e-2 1.60e-2 

Forecast 
Year 6  1.26e-2 1.21e-2 1.53e-2 1.81e-2 

Forecast 
Year 10  1.44e-2 1.39e-2 1.61e-2 1.86e-2 

Forecast 
Years 6-10  1.34e-2 1.34e-2 1.56e-2 1.84e-2 

 

Table 1: Warm Pool index ensemble mean 50-year linear trends as a function of lead-

time, in units of °C/year. Bold font indicates that the trends are significant beyond the 

95% level. Underlined numbers indicate that the trends are significant beyond the 98% 

level. In Tables 1-5 orange shading indicates systematic increases or decreases in trends 

as a function of lead-time. Green shading indicates large differences in trends across the 

ensembles for the average over year 6-10 lead-times. Blue shading indicates systematic 

over or under estimates across ensembles for the average over year 6-10 lead-times.  
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Cold 
Tongue 
Trends 

AveObs HadCM3 I2 HadCM3 I3 CanCM4 GFDL 
CM2.1 

Forecast 
Year 1 8.73e-3 8.04e-3 5.28e-3 -6.92e-3 -1.01e-3 

Forecast 
Year 2  5.85e-3 5.01e-3 10.07e-3 -0.55e-3 

Forecast 
Year 6  8.06e-3 8.17e-3 17.59e-3 16.98e-3 

Forecast 
Year 10  12.70e-3 12.91e-3 16.55e-3 16.95e-3 

Forecast 
Years 6-10  10.00e-3 12.85e-3 16.62e-3 17.73e-3 

 

Table 2: Cold Tongue index ensemble mean 50-year linear trends as a function of lead-

time, in units of °C/year. Bold font indicates that the trends are significant beyond the 

95% level. Underlined numbers indicate that the trends are significant beyond the 98% 

level.  
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Pacific τx 
Trends 

 
ECDA HadCM3 I2 HadCM3 I3 CanCM4 GFDL 

CM2.1 

Forecast 
Year 1 -2.46e-4 -1.98e-4 -2.70e-4 -9.30e-4 -3.16e-4 

Forecast 
Year 2  -3.40e-4 -3.29e-4 -2.60e-4 -13.80e-4 

Forecast 
Year 6  -3.37e-4 -2.87e-4 2.85e-4 -1.42e-4 

Forecast 
Year 10  -1.23e-4 -0.19e-4 0.79e-4 -2.70e-4 

Forecast 
Years 6-10  -2.77e-4 -1.31e-4 1.35e-4 -1.56e-4 

	  

Table 3: Pacific τx index ensemble mean 50-year linear trends as a function of lead-time, 

in units of dPa/year. Bold font indicates that the trends are significant beyond the 95% 

level. Underlined numbers indicate that the trends are significant beyond the 98% level. 	    
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Pacific Ocean 
Thermocline 

Trends 
AveObs HadCM3 I2 HadCM3 I3 CanCM4 GFDL 

CM2.1 

Forecast Year 
1 -2.27e-2 -0.71e-2 -0.93e-2 0.17e-2 -0.81e-2 

Forecast Year 
2  0.25e-2 0.30e-2 -0.33e-2 0.78e-2 

Forecast Year 
6  1.14e-2 0.99e-2 -1.18e-2 -0.29e-2 

Forecast Year 
10  1.28e-2 0.76e-2 -0.76e-2 -0.02e-2 

Forecast 
Years 6-10  1.43e-2 0.86e-2 -0.98e-2 -0.49e-2 

	  

Table 4: Pacific Ocean thermocline index ensemble mean 50-year linear trends as a 

function of lead-time, in units of °C/year. Bold font indicates that the trends are 

significant beyond the 95% level. Underlined numbers indicate that the trends are 

significant beyond the 98% level.  
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Indian Ocean 
Thermocline 

Trends 
AveObs HadCM3 I2 HadCM3 I3 CanCM4 GFDL 

CM2.1 

Forecast 
Year 1 -1.05e-2  -0.38e-2 -1.22e-2 -1.17e-2 

Forecast 
Year 2   -0.56e-2 -0.82e-2 -1.60e-2 

Forecast 
Year 6  0.57e-2 0.28e-2 0.18e-2 -0.01e-2 

Forecast 
Year 10  1.08e-2 0.95e-2 0.81e-2 0.51e-2 

Forecast 
Years 6-10  0.76e-2 0.69e-2 0.48e-2 0.26e-2 

	  

Table 5: Indian Ocean thermocline index ensemble mean 50-year linear trends as a 

function of lead-time, in units of °C/year. Bold font indicates that the trends are 

significant beyond the 95% level. Underlined numbers indicate that the trends are 

significant beyond the 98% level. 
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Figure 1: 1961-2009 tropical Indo-Pacific upper ocean trends calculated from the ECDA 

and ORAS4. A) At 5 m. Boxes indicate regions used to form Warm Pool (18°N-18°S, 

60°-165°E) and Cold Tongue (4°N-4°S, 170°E-70°W) indices. B) Zonally averaged 

across the Indian Ocean. Box indicates region used to form the Indian Ocean thermocline 

index (75-275 meters depth, 9°S-16°S, 30°E-100°E). C) Along the Equator. Box 

indicates the region used to form the Pacific Ocean thermocline index (125-250 meters 

depth, 5°N-5°S, 140°E-160°W). Contour interval equal to 0.004°C/year.   

(A)	  

(B)	  

(C)	  
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Figure 2: 1961-2009 GFDL ECDA τx linear trend, in units of Pa/year. Box indicates the 

region used to form the τx index (5°N-5°S, 120°E-70°W).  
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Figure 3: Schematic of forecasted trends in initialized 10-year hindcasts.  Hindcasts are 

initialized the year preceding forecast year-1 on November 1. To illustrate how the 

forecast years are defined, forecast year-1 is highlighted in red and forecast year-6 is 

highlighted in blue. 
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Figure 4: HadCM3 i2 (left) and HadCM3 i3 (right) Warm Pool index, in units of °C. 

Ensemble mean (thick black line) and ensemble spread (gray shading) for lead-time of 1, 

2, 6, and 10 years. Observations shown with red line. Numbers show linear trend of the 

ensemble mean. 
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Figure 4 continued: CanCM4 (left) and GFDL (right) Warm Pool index. 
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Figure 5:	  HadCM3 i2 (left) and HadCM3 i3 (right) Cold Tongue index, in units of °C. 

Ensemble mean (thick black line) and ensemble spread (gray shading) for lead-time of 1, 

2, 6, and 10 years. Observations shown with red line. Numbers show linear trend of the 

ensemble mean. 
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Figure 5 continued: CanCM4 (left) and GFDL (right) Cold Tongue index. 
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Figure 6: HadCM3 i2 and HadCM3 i3 Pacific τx index, in units of dPa. Ensemble mean 

(thick black line) and ensemble spread (gray shading) for lead-time of 1, 2, 6, and 10 

years. Observations shown with red line. Numbers show linear trend of the ensemble 

mean. 
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Figure 6 continued: CanCM4 and GFDL Pacific τx index. 
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Figure 7: HadCM3 i2 (left) and HadCM3 i3 (right) Pacific Ocean thermocline index, in 

units of °C. Ensemble mean (thick black line) and ensemble spread (gray shading) for 

lead-time of 1, 2, 6, and 10 years. Observations shown with red line. Numbers show 

linear trend of the ensemble mean. 
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Figure 7 continued: CanCM4 (left) and GFDL (right) Pacific Ocean thermocline index. 
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Figure 8:	  HadCM3 i2 (left) and HadCM3 i3 (right) Indian Ocean thermocline index, in 

units of °C. Ensemble mean (thick black line) and ensemble spread (gray shading) for 

lead-time of 1, 2, 6, and 10 years. Observations shown with red line. Numbers show 

linear trend of the ensemble mean. 
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Figure 8 continued: CanCM4 (left) and GFDL (right) Indian Ocean thermocline index. 
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Figure 9:  PDFs of detrended annual mean Warm Pool indices for lead-times of 2 years 

(green), 6 years (red), and 10 years (blue), in units of °C. PDFs of detrended observed 

annual means shown with black dashed line. A) HadCM3 i2. B) HadCM3 i3. C) 

CanCM4. D) GFDL. 
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Figure 10: PDFs of detrended annual mean Cold Tongue indices for lead-times of 2 

years (green), 6 years (red), and 10 years (blue), in units of °C. PDFs of detrended 

observed annual means shown with black dashed line. A) HadCM3 i2. B) HadCM3 i3. C) 

CanCM4. D) GFDL. 
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Figure 11: PDFs of detrended annual mean Pacific τx indices for lead-times of 2 years 

(green), 6 years (red), and 10 years (blue), in units of dPa. PDFs of detrended observed 

annual means shown with black dashed line. A) HadCM3 i2. B) HadCM3 i3. C) 

CanCM4. D) GFDL. 
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Figure 12: PDFs of detrended annual mean Pacific Ocean thermocline indices for lead-

times of 2 years (green), 6 years (red), and 10 years (blue), in units of °C. PDFs of 

detrended observed annual means shown with black dashed line. A) HadCM3 i2. B) 

HadCM3 i3. C) CanCM4. D) GFDL. 
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Figure 13: PDFs of detrended annual mean Indian Ocean thermocline indices for lead-

times of 2 years (green), 6 years (red), and 10 years (blue), in units of °C. PDFs of 

detrended observed annual means shown with black dashed line. A) HadCM3 i2. B) 

HadCM3 i3. C) CanCM4. D) GFDL. 
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